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VISION

A healthy, secure, prosperous
and sustainable society for

“Understanding the complex,
changing planet on which we
live, how it supports life, and
how human activities affect its
ability to do so in the future is
one of the greatest intellectual
challenges facing humanity. It
Is also one of the most important
for society as it seeks to achieve
prosperity and sustainability.”

NRC (2005)
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OUTLINE OF SUMMER ICE SHEET.
SEPTEMBER 1979




Greenland Ice Sheet Melt Extent
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Large Scale Transport in the
Atmosphere

— Trop/Strat Exchange and the
Processes that Control Strat Water
Vapor

—How Boundary Condition on Water
Responds to Climate Forcing



Ozone Loss in Northern Hemisphere
from Satellite
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Cl, +hv — Cl+Cl

Cl+0, = ClO+0,

ClO+BrO —CI+Br+0,
Cl+0, - CIO+0, . Coupling of Chlorine and Bromine
Br+0O, —=BrO+0,

0,+0, — 30,
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Potential impact of climate change on water vapor in the atmosphere raises
the threshold temperature for halogen activation.

Kirk-Davidoff et al., 1999
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ENVIRONMENTAL POLICY ’

METHYL BROMIDE PHASEOUT
STYMIED

After falling for many years, U.S. consumption of the
ozone-depleting fumigant may be rising

:‘)--“,“- o Ty .'“‘“’;.‘
S o,

HEALTHY HARVEST California ranchers prepare their strawberry field for

research on alternatives to methyl bromide.
PHOTO BY SCOTT BAUER/USDA

Methyl bromide is the largest
atmospheric bromine source.

Future levels of bromine in
the atmosphere may increase.




Control of Ozone in the Lower Stratosphere

— Cause of Ozone Erosion in the Lower
Stratosphere

— Impact of Ozone on Tropopause Boundary
Condition

— Forecast of UV Dosage Level in the next
Decade, Two Decades.

— Union with Medical Community to Forecast
Human Health Impact



. The issue of absolute water vapor
concentrations and the large disparity
between satellite and in situ
concentrations

e 2. The introduction of isotopic tracers to
diagnose mechanistic structure of
strat/trop exchange




 HALOE 160-100 hFa

Figure 1. Summary of intercomparison relationships summarized
in the 2000 SPARC report. Symbols give % difference from
HALOE. Horizontal lines show range of intercomparisons.



Aura Launch : July 15, 2004

Vandenberg Air Force Base, CA
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Stratosphere

HDO _ 3 & 10+

) out leads to HDC ] = - o8
Y g e * injection

Tropopause
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In situ water isotope > Troposphere
measurements can offer \

a tracer for the e 5

condensation history of 0959450

air parcels %9 rainout

Ocean:

6D =1000 ( HDO/H,O/SMOW - 1)



of absorptlon cross-section /-f,;-\,.\
o |

[]1COS Optical Cavity||

f

High Signal to Noise (SNR = 30 at 5ppm) ‘
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Optical stability
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In flight cals/diagnostics
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HOX Isotopes:

Photolysis - Fluorescence detection of HDO/H20

Excimer Lamp Photolysis

H,0 + hv — H + OH
HDO + hv — H + OD

hv = 8W
A=172 nm
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Extensive and intensive laboratory calibrations
Using Sl traceable standards
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Ly-o. Water Vapor (| TS

HOxotope
H,0, HDO

ICOS
H,0, HDO, H, 0, CH,

Ly-o. Total Water
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Water measurements during AVE-WIIF

Harvard Lyman-o

Pallet 3
water vapor
= ICOS water vapor isotopes
Pallet 2
HOxotope
water vapor
isotopes

JLH multipass laser IR Pallet 4
water vapor Harvard Lyman-ot
total water

ALIAS multipass laser IR
total water isotopes
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WIIF 20050703, 20050705, 20050707

10 T T
= e
10-second data / ]
Isqft H.O > 0 ppmv & H,0 < 100 ppmv; 0.986, int=0.39 . =
/
g~
E 10} :
S
%
x
-
a
-
Slope=0.986
g " 1
A A -yt 1 - '
10' 10° 10’
HVD H70 (ppmv)
3 WIIF 20050703, 20050705, 20050707
10 3 I e
10-second data il
Isqft: 0 pprv>H_ 0<1000 ppmv; slope=1.026,int=0.43 ' /-/
2 T K
. /\//’ '
E 107} -
S
o
7
o}
he =
10'F —d o
Slope=1.026
10’

HVD H,0 (ppmv)

10°

WIIF 20050703, 20050705, 20050707

10 et — —
10-second data BLs
0 pprrmH:OdOOO ppmy; slope=1.0372,imt=0.14 I " /./
| '-’/
o
E 10°- |
Q.
:
2
Slope=1.037
ope=1.
a A 3 A . P 8 s A
10' 10° 10’
HVD H.O (ppmv)
o WIIF 20050703, 20050705, 20050707
T —
10-second data , 7%
Isqft: 0 ppmv>H,0<1000 ppmv; slope=1.009,int=0.94 - b
g 102: B
O.
F S
w
o
Q
10'

Slope=1.009 |

-

10 10
HVD H,0 (ppmv)



pressure (mbar)

AVE WIIF |n 5|tu and MLS latitude

D_ ................. T e e
: | § § z § - (HVD+JLH);‘“2 lon>-93 5 i
: : : S v MLS (32.6-94.1)
- A MLS (297 94.0)
e > MLS (25.2,96.0)
" 5 A MLS (28.1.95.3) 3
s ﬁ : : S MLS (26.7, 955)
1 g |
50 _MLTMH<{ ................................................................................................................... [ 30
| Lo |
s ] A 429
s =28
100 { R PO P PP PP PP P PO PP EETPREERERO SRR
27
O
%
150 2 o i

water vapor (ppmv)



greement among these in situ instruments
IS consistent with their quoted accuracy from
the mid- troposphere to lower stratosphere.

Satellite instrument validation efforts require
high quality water vapor measurements with
corroborated accuracy during all AVE
deployments.

Measurements of stratospheric water vapor
used for trend measurements need to
have traceability to S| standards.



Intercomparison.

Importance of independent methods used to diagnose
systematic errors intrinsic to all observations.

Sunshine policy on how raw data are converted to
reported concentrations that are submitted to the
archive.

Key role played by head-to-head intercomparison flights.

Need for a review board to critique field observations as
IS done with laboratory kinetics and photochemistry
results.



response to climate change

e Accordingly water vapor measurements with Sl
traceabillity are required for:

a.Establishing a temporal record of stratospheric
water vapor

b.Satellite validation

c. Testing of strat-trop exchange mechanisms
d.Testing of climate models
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Figure 2: Flight track overlaid on the IR satellite image (Courtesy Lenny Pfister).
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AVE_WIIF All flights stratosphere only
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Tropical air

6 ppmv H,O =4 ppmv
oD =-523 per dD = -650 per mil

mil

2 ppmyv
d D =-280

Tropical source: 4 ppm S

@ -650 per mil
Convected source: 2 ppm
@ -280 per mil

0D = 4/6(-650 per mil) +

2/6(-280 per mil)
oD =-523 per mil




Stratosphere is isotopically very heavy, 6D ~ 450 per mil

Isotopic enhancements persist up to maximum altitude
of WB-57 (0 > 420 K)

Water additions from convected ice are observed up
to maximum altitude of WB-57 (6 > 420 K)

Mid-latitudes deep convection may be a significant
source of water (isotopically heavy) to the overworld
stratosphere



